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INTRODUCTION

Transition metal and intermetallic compound
hydrides exhibit substantial isotopic effects, which,
under equilibrium conditions, result in the concentra-
tion of the heavy hydrogen isotope in the solid hydride
phase or the gas phase brought in contact with the solid.
In practice, this property of hydrides can be used in
schemes for separating hydrogen isotopes on an indus-
trial scale [1]. The vast diversity of intermetallic com-
pounds absorbing substantial amounts of hydrogen
opens up a possibility for the search for some optimal
hydride system (systems). Naturally, there exists a set
of optimization parameters, a complete and thorough
study of which is a complex physicochemical problem.
In this work, our goal was to consider one of the criteria
for the search for promising (for separation of hydrogen
isotopes) intermetallic compounds, namely, the equi-
librium isotopic effect proper, which is numerically
characterized by the separation coefficient
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 are the concentrations of the heavy iso-
tope in the solid (hydride) and gas phases, respectively.

Abundant data have been collected [2] on separation
coefficients for both pure metals (Pd, V, Ti, Zr, U, etc.)
and intermetallic compounds of various structures. The
latter include compounds of the TiFe (AB), TiCr
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, and LaNi
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) types. Nevertheless, the num-
ber of compounds studied thus far amounts to dozens,
whereas the number of intermetallic compounds is vir-
tually infinite, because of the possibility of continu-
ously varying their composition provided by the forma-
tion of solid solutions and the superstoichiometry phe-
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nomenon. Clearly, experimental studies of isotopic
equilibria for infinitely many systems with intermetal-
lic compounds require an infinitely long time. On the
other hand, a fairly simple, but reliable, theoretical
model describing thermodynamic isotopic effects for
hydrogen in systems with solid hydride phases might
be very useful, both for estimating whole classes of
intermetallic compounds as systems for separating
hydrogen isotopes, and for studying the behavior of a
selected system in more detail.

Such a model should satisfy the sole and, at the
same time, severe requirement, namely, it should be
based on

 

 some parameters characterizing the nature of
the metals constituting the intermetallic compound
under consideration.

 

 As the thermodynamic isotopic
effect is determined by the energy spectrum of the
vibrational states of hydrogen in a metallic matrix [2],
these parameters should describe various atom–atom
interactions in the hydride phase, first and foremost,
metal–hydrogen interactions
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 is the metal–hydrogen internuclear dis-
tance, and 
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Me

 

 is a set of parameters characterizing
the metal. From this point of view, the model of the Ein-
stein three-dimensional harmonic oscillator, which
most often correctly describes the temperature depen-
dence of separation coefficients, is by itself insufficient
for solving the problem. Indeed, hydrogen atom vibra-
tions in such a model are, in essence, empirical in char-
acter being quantitatively unrelated to the nature and
the structure of the metallic matrix. These relations can
only be established by correctly selecting metal–hydro-
gen interaction potential (2). The vibrational problem
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—A model in which the metal–hydrogen interatomic interaction potential in the solid phase is
described by the Gauss normal distribution function was suggested to explain and predict equilibrium isotopic
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 compounds. These results prove the applicability of the representation of the potential for hydro-
gen in intermetallic compounds as a superposition of the potentials of separate metal atoms, which allows sim-
ple criteria for the search for systems with the largest isotopic effect to be formulated and substantiated.
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can then be solved by expanding this potential in pow-
ers of hydrogen displacements in the vicinity of its
equilibrium position followed by calculating the natu-
ral frequencies of the oscillator in the harmonic approx-
imation. Stationary perturbation theory can be applied
to find necessary anharmonic corrections. Nevertheless,
it appears that we cannot 

 

a priori

 

 decide at what term this
perturbation series should be truncated, and each partic-
ular case requires serious additional analysis. For this
reason, we used a somewhat different approach based on
selecting a fairly convenient and flexible potential and
applying the variational technique [3].

A VARIATIONAL THEORY OF LOCAL 
HYDROGEN ATOM VIBRATIONS

IN A PERIODIC GAUSS POTENTIAL

Consider a hydrogen atom in a crystal lattice formed
by metal atoms or, in an intermetallic compound, atoms
of several metals. The mass of the hydrogen atom is
small in comparison with the mass of any 

 

d

 

-

 

 or 

 

f

 

-metal;
lattice vibrations can therefore be ignored, and the lat-
tice can be considered static. According to the Bloch
scheme [4], the wave functions of a proton in the peri-
odic potential of the lattice have the general form

 

(3)

 

where index 
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 plays the role of a set of quantum num-
bers (

 

1

 

s
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, etc.), 
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 is the wave vector, and 

 

R

 

 is the
crystal lattice vector. As the summation in (3) is over all
lattice vectors, eigenenergies 

 

E

 

n
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 are given by

 

(4)
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 is used, and 
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 is
the one-particle Hamiltonian. Equation (4) can be
rewritten as
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where the first term makes the major contribution to the
energy if the 
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 functions are well localized; that is,
the 
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 integral virtually equals zero.
Clearly, the localization condition is satisfied. It fol-

lows from the inelastic neutron scattering spectra of
hydrides of many metals that the energies of optical
vibrations of protium in tetrahedral interstices are, as a
rule, of 100–150 meV [5, 6], which corresponds to the
radius of localization of the wave function of the ground
vibrational state (

 

n

 

 = 1

 

s

 

) equal to 

 

0.3–0.25 

 

Å. Because
distances between neighboring interstices are of 

 

1 

 

Å or
larger, hydrogen atoms prove to be “bound” to the corre-
sponding interstices of the metallic matrix. As a result,
energy values cease to depend on the wave vector,

 

(6)
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Note that the approximation of local modes is inap-
plicable to states with high quantum numbers n and
cannot be used if the dynamics of the metallic lattice is
taken into account, or hydrogen atoms are involved in
substantial interactions with each other. At tempera-
tures of the order of 373 K and below, the population of
excited states with high energies is, however, negligibly
small. For this reason, we will only consider the lowest
(that is, well localized) levels. Next, because of the
small mass of hydrogen, taking into account vibrations
of heavy metal atoms, can only cause an insignificant
broadening of optical levels. Lastly, it appears that H–
H interactions should be explicitly included only in
consideration of hydrides of palladium and some palla-
dium-based alloys whose optical phonon branches are
characterized by strong dispersion [5, 6].

The next step toward model construction requires
selecting an H–Me periodic potential created by matrix
atoms. It can be assumed that interaction of some metal
atom i with hydrogen has the form of the Gauss normal
distribution function

(7)

where the Ai and αi constants characterize the nature of
the metal, and r is the metal–hydrogen internuclear dis-
tance. The pair potential in such a form (further referred
to as the Gauss potential) was selected from the follow-
ing considerations. First, the Gauss function very rap-
idly decreases as distance increases, which makes it
possible to take into account only few metal atoms con-
stituting the nearest environment of hydrogen. (In this
work, the summation of the potential was conducted
over 27 unit cells of the metallic matrix in all calcula-
tions; this number proved to be more than sufficient.)
Secondly, the factorization of (7)

(8)

facilitates calculations in the Cartesian coordinate sys-
tem directly related to the crystal lattice. Thirdly, for
harmonic oscillator wave functions, 〈n |ui|n〉-type inte-
grals are calculated analytically, which also substan-
tially decreases the amount of necessary calculations.

The property of the Gauss potential to take on a
finite value at r = 0 (where the real potential should tend
to infinity) by no means distorts the physical picture. As
mentioned, the radius of localization of the wave func-
tions describing several lowest vibrational states is
much smaller than the equilibrium metal–hydrogen
distance; for this reason, in calculations of the corre-
sponding potential energy matrix elements, the finite
character of ui(0) cannot lead to a serious error or con-
fusion.

Lastly, note that the use of a linear combination of
Gauss functions as an approximation to the real metal–
hydrogen potential (if such a potential can be obtained
in quantum-chemical or other calculations) does not
introduce difficulties of a fundamental character.

ui r( ) Ai α ir
2–( ),exp=

ui r( ) Ai α ix
2–( ) α iy

2–( ) α iz
2–( )expexpexp=
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Prior to writing down the complete periodic poten-
tials and performing calculations, consider one more
characteristic of the ui(r) function. According to (7),
such an atom–atom potential is characterized by two
independent parameters for each metal. To maximally
simplify the model, it can be assumed that Ai is the
same for all metals; the nature of the metal is then char-
acterized by a single parameter, which can be written as

αi = 1/ . The ρi value has the dimension of length and,
therefore, plays the role of the effective radius of the
metal atom.

According to the aforesaid, the total periodic poten-
tial of a metallic matrix for a hydrogen atom has the
form

(9)

where the summation is over all crystal lattice vectors
and all unit cell basis atoms, and di is the basis vector
for the ith metal atom in the unit cell.

Solutions to the Schrödinger equation with the
Hamiltonian

, (10)

where P is the momentum operator, and M is the mass
of the hydrogen atom, will be sought with the use of the
variational technique for the basis set of the wave func-
tions of the three-dimensional harmonic oscillator [3]

(11)

The χj(j, ωj , nj) functions, where j = x, y, z, are the
eigenfunctions of one-dimensional harmonic oscilla-
tors with frequencies ωj , and nj = 0, 1, 2, … are the cor-
responding quantum numbers. Let us write the true
wave functions of our system ψm(r) in the form of lin-
ear combinations of the harmonic oscillator functions

(12)

The expansion coefficients for the ground-state func-
tion c0n and the ωj values form the set of parameters for
varying the 〈0|H|0〉  matrix element until it reaches a
minimum, after which the cmn coefficients for m > 0 are
found by orthogonalization.

Let us simplify the procedure. Suppose that all cmn
coefficients except cnn are negligibly small, that is

(13)

For the matrix elements of the kinetic energy operator,
we then have [7]

, (14)

ρi
2
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where � is the Planck constant. The matrix elements of
the potential energy operator are calculated by the
scheme

(15)

(16)

The notation used in (15) and (16) is as follows: r = (rx ,

ry , rz), R = (Rx , Ry , Rz), di = (dix , diy , diz),  are bino-

mial coefficients, (ζij) are the Hermite polyno-
mials,

(17)

(18)

(19)

(20)

and d = (δx , δy , δz) is the radius vector of the equilib-
rium position of hydrogen in the interstice. The last
value was introduced because it is more convenient to
use the coordinate system with the origin at a metal
atom rather than hydrogen. In deriving (16), we used
the equation [8]

For the ground vibrational state, the matrix element of
the Hamiltonian takes the form

(21)

The wj values should be adjusted to minimize (21). As
is clear from general quantum-mechanical consider-
ations, the d radius vector approximately corresponds
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to the position of the minimum of the potential function
in the interstice. In the absence of strict limitations by
symmetry, this parameter, however, may and should
play the role of an additional variational parameter.

The matrix elements of excited states are calculated
by (15), (16) with the use of the optimized parameters
of the ground-state wave function.

In the section that follows, we apply this model to
some metal and intermetallic compound hydrides.

APPLICATION TO HYDRIDE SYSTEMS

Metals (parametrization of the method). Group IV
and V transition metal hydrides possess the most char-
acteristic properties of metal hydrides except PdHx. We
will consider titanium, zirconium, vanadium, and nio-
bium hydrides. Common to them is the ability to form
dihydrides MeHx (x ≈ 2) with a fluorite-type structure,
in which hydrogen atoms occur in tetrahedral inter-
stices d = (1/4, 1/4, 1/4) of the FCC metal matrix lat-
tice. Although this structure is different from that of
pure metals, the compounds undergo structural phase
transitions at certain hydrogen concentrations [9]. The
unit cell parameters of the corresponding dihydrides
and the frequencies of local hydrogen atom vibrations
measured by inelastic incoherent neutron scattering are
listed in Table 1.

The available structural data were used to solve the
inverse vibrational problem; that is, we determined the
parameters of the Gauss metal–hydrogen interaction
potentials describing the experimental frequencies of
the local modes. The arbitrariness involved in selecting
the A constant was removed by the introduction of an
additional harmonicity criterion, namely, the virial
ratio

(22)

where T and U are the kinetic and potential energy
operators, respectively. For the harmonic oscillator, the
strict equality ϑ  = 1 holds. In solving the problem by
the variational method, the basis functions of the har-
monic oscillator are used, and such an approximate
solution can only be physically meaningful if the total
potential for the hydrogen atom in the interstice is
insignificantly different from harmonic; that is, ϑ  ≈ 1.
This is substantiated by the neutron studies of most
transition metal hydrides [5, 6] except PdHx, where
hydrogen occupies octahedral interstices. From the
point of view of a harmonic description of all four
metal dihydrides, the most suitable A constant value
was A = 4.25 eV.

The corresponding ρi parameter values, the local
mode frequencies for hydrogen, and the virial ratios ϑ
are listed in Table 2, which also contains harmonic
ratios f; that is, the ratios between the ground state
oscillator energies for protium and deuterium. For the

ideal harmonic oscillator, f =  ≈ 1.414.

ϑ 0 T 0〈 〉 0 U 0〈 〉 ,⁄=

2

These results show that the effective metal–hydro-
gen interaction radii, ρi, correlate with the atomic radii
of the corresponding metals, or, which is the same, with
the unit cell parameters of the hydrides. In all metal
hydrides, the behavior of hydrogen in tetrahedral inter-
stices insignificantly deviated from harmonic.

Intermetallic AB2-type compounds (calculation of
separation coefficients). Given the parameters of the
metal–hydrogen interaction potential for various met-
als, we can directly approach the problem of determin-
ing the separation coefficients for hydrogen isotopes X
and X* in systems with intermetallic compound
hydrides. According to [1],

(23)

where αXX* is the separation coefficient in the region of
low concentrations of the heavier hydrogen isotope X*,
ZX and ZX* are the partition functions for the isotopic
forms of the hydride phase, and ZXX and ZXX* are the
partition functions for molecular hydrogen in the gas
phase. The ratio between the two latter values is given
by [10]

(24)

where T is the absolute temperature in Kelvin, and an
are the tabulated coefficients of the Bron polynomial
[10] for the XX and XX* molecules. In the Einstein
approximation of independent harmonic oscillators, the
vibrational component of the partition function of
hydrogen in the hydride phase is given by [11]

(25)

where gi is the statistical weight of the local mode with
the ωi frequency (by virtue of the normalization condi-

tions,  = 3), and k is the Boltzmann constant. If
�ωi � kT, the hyperbolic sine can be replaced by an
exponential function in (24), which is equivalent to
complete neglect of the spectrum of excitations. A
wealth of experimental data [2] show that the latter con-
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,
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Table 1.  Neutron diffraction and inelastic scattering data on
the structure and hydrogen local modes for Group IV and V
transition metal hydrides with CaF2-type structures

Phase x a, Å �ωH, meV

γ'-TiHx ~2 4.454 [9] 149 [2]

δ-ZrHx 2 4.779 [9] 139 [6]

γ-VHx 1.5–1.7 4.271 [9] 160 [2]

δ-NbHx 2 4.55 [9] 148 [2]

Note: x is the composition, a is the FCC unit cell parameter, and
�ωH is the local mode frequency.
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dition does hold for most metal and intermetallic com-
pound hydrides. As concerns deuterium and tritium-
containing phases, they can be treated, taking into
account, the contribution of only the first excited state
of each local mode. The ZX/ZX* ratio between the parti-
tion functions of the hydride phases is shown in Fig. 1
as a function of the frequency of the triply degenerate
local mode. These ratios were calculated taking into
account (a) the ground, (b) the ground and first excited,
and (c) all harmonic oscillator states at T = 293 K. The
coalescence of curves (b) and (c) at �ω > 100 meV sub-
stantiates the conclusions drawn above.

As follows from the neutron diffraction data [12–15]
on the corresponding deuterides, deuterium atoms in
AB2-type intermetallic compounds (Laves phases) pre-
dominantly occupy A2B2-type tetrahedral interstices
(here, A is the metal with the larger, and B, with the

smaller crystallographic radius). There are exceptions
to this rule, when the population of AB3 tetrahedra
becomes nonzero (ZrV2). In systems of the first type,
the excitation spectrum comprises three different fre-
quencies, and in systems of the second type, there is
one nondegenerate and one doubly degenerate mode.
Nevertheless, the splitting of the energy levels of the
excited states has no effect on the separation coefficient
in two limiting cases: (a) if the isotopic effect is deter-
mined by the contribution of only the ground state and
(b) if the splitting is small in comparison with the exci-
tation energy. Condition (b) is almost always satisfied;
strong splitting of the first excited state was observed
experimentally only in unsaturated phases of Group V
metal hydrides with a low-symmetry local environment
of hydrogen atoms [2].

It follows that, for each type of occupied interstices,
one averaged triply degenerate frequency �ω can be
used in partition function calculations. For the har-
monic oscillator, this frequency equals 2/3 of the
ground state energy. A preliminary analysis also
showed that, within the framework of the model under
consideration,

(26)

which allows a smaller number of wave function
parameters to be used. The difference between the
ground state energies obtained with and without the use
of simplification (26) does not exceed 1 meV; that is,
this difference is within the error of experimental deter-
minations of separation coefficients. The last remark
that should be made concerns the identity of the struc-
tures of the isotopically substituted hydride phase
forms. The structural data of neutron diffraction exper-
iments, as a rule, refer to metal deuterides. It is, how-
ever, known [16] that tetrahedral and octahedral site
population probabilities in VHx differ from those in
VDx . It, however, appears that vanadium is rather an
exception, and isotopic polymorphism is not character-
istic of a large number of other metal hydrides [9]. Data
on the influence of isotopic substitution of hydrogen on
the structure of intermetallic compound hydrides are
still lacking; we will assume that there is no such influ-
ence.

Let us use the superposition principle and transfer
the metal–hydrogen potentials determined for pure
metal hydrides to intermetallic compound hydrides. By
way of example, consider several hydride systems
based on ZrB2 (B = V, Cr, and Mn).

ZrV2. This compound has a MgCu2-type structure.
At fairly high deuterium pressures approximately cor-
responding to the ZrV2D5 solid phase composition, tet-
rahedral interstices Zr2V2 and ZrV3 in the matrix of the
intermetallic compound are occupied by deuterium.
The partial population of ZrV3 sites amounts to about
30%. The cubic unit cell parameter is a = 7.913 Å [12,
13]. The αHT separation coefficient was calculated with
the use of the metal–hydrogen pair interaction poten-

ωx ωy= ωz ω,= =

Table 2.  Calculation data on Group IV and V transition metal
hydrides with CaF2-type structures

Hydride 
phase ρi, Å �ωH, meV ϑ f

γ'-TiHx 0.88 149 1.021 1.419

δ-ZrHx 0.94 138 1.025 1.420

γ-VHx 0.86 159 1.013 1.415

δ-NbHx 0.91 148 1.007 1.417

Note: ρi is the potential parameter, �ωH is the local mode frequency,
and ϑ  and f are the virial and harmonic ratios (see text).

80 120 160 200
�ω, meV

0.1

0.2

0.3

ZX/ZX*

H/D

H/T

Fig. 1. Ratio ZX/ZX* between partition functions of hydride
phases as a function of the frequency of the triply degener-
ate local mode calculated taking into account the ground
(dashed lines), ground and first excited (dot-dash lines), and
all (solid lines) harmonic oscillator states (T = 293 K).
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tials ρi determined for zirconium and vanadium (see the
preceding section) taking into account the additivity of
contributions of each tipe of interstices.

The temperature dependence of αHT is shown in Fig. 2.
Open circles correspond to the experimental data [2].
There is close agreement between theory and experi-
ment, which justifies the use of the superposition
approach to potential modeling. For comparison, the
hypothetical temperature dependences obtained on the
assumption that interstices of only one type (Zr2V2 or
ZrV3) are occupied are also shown in the figure; neither
of these two dependences correctly describes the exper-
imental data.

ZrMn2 + x. This compound has a MgZn2-type struc-
ture. At high deuterium pressures, a saturated phase
having a composition close to ZrMn2D3 is formed. In
this phase, deuterium atoms only occupy Zr2Mn2 tetra-
hedral interstices. The hexagonal unit cell parameters
are a = 5.391 Å and c = 8.748 Å [14].

The unknown ρi parameter value for Mn–H interac-
tions was determined directly from the experimental
αHD and αHT separation coefficient values in the tem-
perature range 239–323 K; this gave ρi = 0.73 Å. The
calculated temperature dependences of the separation
coefficients are shown in Fig. 3.

The available data [15] on the structure of the super-
stoichiometric ZrMn2.75D3.1 phase, in which manganese
atoms substitute a part (about 20%) of zirconium atoms
in the corresponding crystallographic sites, and on the

separation coefficients for ZrMn2.8 can be used to check
the correctness of the ρMn value cited above. The inter-
action potential between A and hydrogen in the struc-
ture of the AB2 matrix was written as the superposition
of the corresponding potentials for A and B

(27)

where s is the degree of substitution; in superstoichio-
metric ZrMn2.75, s = 0.2. The temperature dependences
of the αHD and αHT separation coefficients calculated
with the use of the macroscopic ZrMn2.75D3.1 lattice
constants a = 5.349 Å and c = 8.700 Å [15] and ρMn =
0.73 Å are shown in Fig. 4. The calculation results
closely agree with the experimental data.

Also shown in Fig. 3 are the experimental separa-
tion coefficients for ZrMn3.8. Because of the absence of
data on the structure of this superstoichiometric com-
pound, the coefficients were not calculated. Note, how-
ever, that the separation coefficients for ZrMn2.8 and
ZrMn3.8 are virtually equal, whereas for ZrMn2.8, they
are noticeably lower than for ZrMn2. Therefore, there
should be some factor that counterbalances this down-
ward tendency of separation coefficients, such as, for
instance, filling of AB3 tetrahedra by hydrogen.

ZrCr2. The structure of this compound is similar to
that of ZrV2 at high temperatures and that of ZrMn2 at
low temperatures. The lattice constant of the ZrCr2H4
cubic phase equals 7.654 Å [17]. The isotopic effect for
ZrCr2 exhibits a strong temperature dependence
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Fig. 2. Temperature dependences of the αHT separation
coefficient in the ZrV2-based system. Open circles corre-
spond to experimental data, and dashed and dot-dash lines
were obtained on the assumption that interstices of one type
only were populated.

Fig 3. Temperature dependences of the αHT and αHD sepa-
ration coefficients in the ZrMn2 + x-based system: (1)
ZrMn2(H/D), (2) ZrMn2(H/T), (3) ZrMn2.8(H/T), (4)
ZrMn3.8(H/T), and (5) ZrMn2.8(H/D) (symbols are experi-
mental values).
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uncharacteristic of most of the other intermetallic com-
pounds [18] (see Fig. 4). The use of ρCr = 0.795 Å,
which is the mean of ρV and ρMn, as the potential
parameter and the hypothesis that hydrogen only occu-
pies interstices of one kind, Zr2Cr2 or ZrCr3, lead to the
temperature dependences of the separation coefficients
somewhat different from the experimental curves. The
isotopic effect is, however, satisfactorily described on
the assumption that hydrogen occurs in Zr2Cr2 tetrahe-
dra at high and ZrCr3 tetrahedra at low temperatures
(Fig. 4). This may be evidence that the relative popula-
tions of interstices of different kinds depends on tem-
perature, which is in part substantiated by neutron stud-
ies. Although the partial population of ZrCr3 interstices
is still low at the temperature of measurements (about
9% at 293 K [17]), the polymorphic transformation of

the ZrCr2 matrix [19] may influence the population
ratio. On the other hand, the observed temperature
dependence of the separation coefficient can be
explained by a structural isotopic effect (isotopic poly-
morphism), as for vanadium hydride.

The calculated averaged frequencies of local hydro-
gen isotope vibrations in the A2B2 and AB3 interstices
of the systems considered above are listed in Table 3.

CONCLUSION
The results of our calculations of separation coeffi-

cients for systems with ZrB2 (B = V, Cr, and Mn) inter-
metallic compound hydrides show that the model of the
superposition of the Gauss metal–hydrogen pair poten-
tials correctly reproduces experimental data. The fol-
lowing conclusions can be drawn:

(1) the harmonic oscillator approximation is valid
for the systems under consideration; the deviations
from the harmonic model do not exceed 1% for the A2B2
and AB3 interstices;

(2) in AB3-type interstices, the energy of the ground
vibrational state of the hydrogen atom is substantially
higher than in A2B2 interstices, and population of the
latter increases the separation coefficient.

The last circumstance gives a key to finding Laves
phase hydrides with large α values.

The developed model may well be applicable also to
intermetallic compound hydrides of other classes (AB
and AB5). It should, however, be noted that obtaining
correct predictions requires the use of reliable data on
the structure of hydride phases. Otherwise, the criterion
of energy minimum should be used. Speculations based
on the model developed in this work are, however, inca-
pable of, for instance, answering the question why
octahedral interstices with a lower energy remain unoc-
cupied in hydrides with CaF2-type structures. To
answer this question, we must consider the minimum of
the Helmholtz rather than potential energy, which
explicitly includes all interatomic interactions.
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