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According to the theory of isotope equilibrium, for
the reaction of isotope exchange between substances
AX and BX
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 designates the heavy isotope of the element X) the
factor of the isotope separation 
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 is calculated by
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 is the so-called 

 

β

 

-factor, which is usually
calculated in harmonic approximation by the Urey for-
mula [1, 2]:
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Here, 
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 is the number of isotopically substituted equiv-
alent atoms, 

 

N

 

 is the number of vibrational degrees of
freedom of substance AX, 
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 are dimension-
less normalized frequencies, 
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 is the Plank constant, 

 

k

 

is the Boltzmann constant, 

 

c

 

 is the speed of light, 

 

T

 

 is
the absolute temperature, and 

 

ν

 

i

 

 

 

is the frequency (cm

 

–1

 

)
of the 

 

i

 

th vibration. The sign X* designates the quanti-
ties corresponding to the heavy isotope. The factor 

 

β

 

 is
a thermodynamic value and equals to the equilibrium
constant of the exchange reaction between substance
AX and hypothetical monoatomic ideal gas consisting
of isotope X

 

*

 

.
In contrast to ionic crystals, for which the 

 

β

 

-factor is
calculated with consideration for only close neighbors
[3], the interatomic interaction in metal crystals is
essentially noncentral and long-range. Therefore, the
models of force field treating only the interactions near-
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est-neighbor and next-to-nearest-neighbor are assumed
to be totally inapplicable to metals. At first glance, this
opinion seems to contradict to the well-established fact
for molecules that the equilibrium isotopic effect (the
value of the 

 

β

 

-factor) depends only on nearest-neighbor
interaction and (to a lesser extent) on next-to-nearest
neighbor interactions of substituted atoms [4]. The pur-
pose of this paper is to elucidate whether isotope sub-
stitution in metals is a localized perturbation (as in all
molecules) or metal crystals constitute a special case
from this viewpoint. Earlier [5], we calculated the ln

 

β

 

values for metals with the bcc lattice using the simplest
cluster approach. Here, we calculated ln

 

β

 

 for these met-
als by direct integration over the first Brillouin band
with the use of the most accurate force fields. The com-
parison of the results obtained by these two methods
and also by a new method of calculation of ln

 

β

 

, intro-
duced by Polyakov [6], makes it possible to evaluate
the accuracy of the modern calculation techniques.

Note, that the calculation of the 

 

β

 

-factor for metal
crystals is of interest in its own right—these values are
necessary to predict attainable separation factors for a
optimally chosen chemiexchange systems for the sepa-
ration of the isotopes of a given element [7].

CALCULATION OF 
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 FACTORS OF METAL 
CRYSTALS

Calculation of ln

 

β

 

 for metals can be generally per-
formed by the following methods: (i) the cluster tech-
nique described in [5]; (ii) direct integration of ln

 

β

 

(
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, 
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3

 

) over the first Brillouin band; (iii) indirect meth-
ods, primarily the Polyakov technique mentioned
above.
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Abstract

 

—To evaluate the attainable accuracy of determination of the equilibrium isotopic effect for solids, the
values of the 

 

β

 

-factors were calculated for bcc metals (alkaline metals, V, Nb, Ta, Cr, 

 

α

 

-Fe, Mo, W). The cal-
culation was conducted by the direct integration over the first Brillouin band with the use of the force constants
of the Born–van Karman model. The results are compared to those obtained previously by the simple cluster
technique and by a method based on the thermal capacity of a crystal. The calculation results for ln

 

β

 

 by the two
methods are in agreement despite the fact that the cluster method cannot reproduce the phonon spectrum of the
crystal. Based on these facts it was concluded that the isotopic effect in metal crystals is localized, as in mole-
cules, and cannot be used to study the phonon spectrum of the crystal and related characteristics. On the other
hand, it was demonstrated, that the cluster approach can be successfully used in calculations on the equilibrium
isotopic effect, particularly for crystals with defects, amorphous solids, and surfaces. The relative attainable
accuracy of calculation of ln

 

β

 

 for metal crystals was determined to be 10–15%. Comparison of the ln

 

β

 

 values
for the crystals and corresponding diatomic molecules made it possible to find a correlation between these val-
ues only within classes of compounds of similar chemical nature.
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Cluster method

 

. The essence of the method is to cal-
culate the vibrational frequencies for the clusters con-
stituting the lattice. The well-known method of 

 

GF

 

matrices, which was developed to calculate the param-
eters of molecular vibrations [8], was used. The cluster
method is based on the notion of local character of the
isotopic effect, as discussed above. Although interac-
tions in metal crystals are characterized by a long
range, we must bear in mind that we implicitly take into
account these interactions by assuming that the force
field and geometry of a cluster is identical to those of
the indefinite crystal and that the purpose of this work
is to determine the value of isotopic effect, and not the
precise phonon spectrum. Note that the cluster method
does not use the symmetry and, therefore, can be used
to calculate the properties of imperfect crystals.

The main features of a cluster calculation of ln

 

β

 

 per-
formed in [5] are as follows. Fragments of the lattice
formed by 1, 9, 15, 27, and 51 atom were considered
(the “cluster” formed by one atom is a three-dimen-
sional harmonic oscillator, with the force constants
being the same as in other clusters). The simplest force
field is described by three parameters: the interaction
constant for nearest neighbors 

 

f

 

R

 

, the interaction con-
stant for next-to-nearest neighbors, and the nondiago-
nal constant 

 

f

 

RR

 

. These values, in turn, were determined
from the crystal elasticity constants C

 

11

 

, 

 

C

 

12

 

, and C

 

44

 

without invoking any additional information. For initial
clusters and clusters in which the central atom is substi-
tuted by the isotope, the 

 

GF

 

 matrices were constructed
and the corresponding vibrational frequencies deter-
mined; then the value of ln

 

β

 

 was calculated by the Urey
formula (2).

For most metals considered in [5], the use of the
simplest cluster (three-dimensional harmonic oscilla-
tor, 

 

n

 

 = 1) gives a result coinciding with the results
obtained for clusters of larger size. This does not mean
that interatomic forces in metal crystals have a short
range: the force constants calculated in the normal-
mode coordinates (used in our calculations) effectively
incorporate long-range interactions as in calculations
of molecular vibrations. This feature is a general prop-
erty of force constants calculated in the normal-mode
coordinates. Note that force constants calculated in the
Cartesian coordinates, as in the Born–van Karman
model, exhibit no such property.

 

Calculation by direct integration

 

. Each elementary
cell of a bcc lattice contains one atom. Thus, every atom
can be determined by its elementary cell, i.e., the radius
vector 
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integer numbers, and 
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 are the fundamental
translation vectors.

Calculation of ln
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 was performed by the formula
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where V is the first Brillouin band. Here, ui(k) =
hcνi(k)/kT are normalized frequencies and νi(k) are the
vibrational frequencies (cm–1) corresponding to the
wavevector k.

The literature data on the force constants of the
Born–van Karman model [9] were used. For a given
wavevector k, the vibrational frequencies are eigenval-
ues of the symmetrical a 3 × 3 matrix; the formulas for
the matrix elements as functions of the wavevector
components are given in [10]. The triple integral (3)
was computed by the recursive call of the integration
procedure described in [11]. The results of the calcula-
tions together with results of the cluster calculations [5]
and the values of lnβ for the corresponding diatomic
molecule are listed in the table. The force constants for
Li are given in the literature at 98 and 293 K; we calcu-
lated lnβ at all temperatures using both sets of constants
and then evaluated lnβ by a linear interpolation of the
results obtained. A similar procedure was applied to Rb
(the force constants are available in the literature for 12,
85, 120, and 205 K). For other metals, the sets of the
force constants are available in the literature only for
single temperature

For V, Nb, and Mo, two sets of the force constants
determined at the same temperature are given; the aver-
age lnβ values calculated with both sets are given in the
table. For Cs and Ba, the literature data are absent. The
listed values of the force constants and lnβ for the
diatomic molecules were calculated in harmonic
approximation by the Urey formula with the use of the
experimental frequencies ν; these frequencies, in turn,
were calculated from ωe, ωexe and higher-order con-
stants of anharmonicity given in [12].

The Polyakov procedure. This procedure is
described in details in [6, 13]. It is used to calculate the
β-factors of minerals at moderate and high temperature
in geochemical studies and normally yields excellent
results for diamond and graphite. In this method, lnβ is
expressed through the difference of the vibrational
energies of the crystal in terms of thermodynamic per-
turbation theory. The subsequent differentiation with
respect to the temperature with the use of analytical
expansions makes it possible to represent lnβ as a func-
tion of the thermal capacity; therefore, the temperature
dependence of lnβ can be determined from the experi-
mental data on the temperature dependence of the ther-
mal capacity of the crystal. The coefficients of the ther-
mal dependence of lnβ are determined by solving an
overdetermined system of linear equations, for exam-
ple, by the least-squares method with a singular trans-
formation of the mapping matrix [11], a procedure that
makes it possible to evaluate the accuracy of the result
obtained. To evaluate the effectiveness of this method,
we calculated lnβ for the metals listed in table using the
data on the thermal capacity from [14].

Me Na K V, Nb, Ta Cr Mo W Fe

T, K 90 9 296 300 296 298 295
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Values of lnβ for bcc metals and for corresponding diatomic molecules (a is the lattice constant, F is the force constant of the
diatomic molecule, mdyne/Å)

T, K I II III I II III
6Li/7Li, a = 3.51 Å, F(Li2) = 0.247 23Na/24Na, a = 4.2906 Å, F(Na2) = 0.168357

50 0.45242 0.48014 0.1479 0.03305 0.03086 0.013779
100 0.14783 0.16265 0.0576 0.00877 0.00842 0.004136
150 0.06917 0.07816 0.03 0.00382 0.00381 0.001918
200 0.03884 0.04487 0.0181 0.00207 0.00216 0.001096
250 0.02459 0.02871 0.012 0.0013 0.00139 0.000706
300 0.01677 0.01976 0.0085 0.00086 0.00096 0.000493
350 0.01432 0.0063 0.0006 0.00071 0.000363
400 0.01079 0.0049 0.00043 0.00054 0.000278

39K/41K, a = 5.32 Å, F(K2) = 0.097 85Rb/87Rb, a = 5.7 Å, F(Rb2) = 0.082
50 0.01442 0.01452 0.006408 0.00273 0.00272 0.0054

100 0.00362 0.00377 0.001729 0.00065 0.00067 0.0014
150 0.00155 0.00169 0.00078 0.00027 0.00029 0.0006
200 0.00083 0.00095 0.000441 0.00014 0.00015 0.0004
250 0.00051 0.00061 0.000283 9.20E-05 0.0002
300 0.00034 0.00042 0.000197 6.00E-05 0.0002
350 0.00023 0.00031 0.000145 4.10E-05 0.0001
400 0.00024 0.000111 2.90E-05 9E-05

50V/51V, a = 3.024 Å, F(V2) = 1.585072 93Nb/95Nb, a = 3.2986 Å
50 0.05929 0.04939 0.0183 0.04293 0.0376 –

100 0.01971 0.01583 0.0069 0.01321 0.0114 –
150 0.00946 0.00751 0.0035 0.00615 0.00531 –
200 0.00547 0.00433 0.0021 0.00351 0.00304 –
250 0.00354 0.00281 0.0014 0.00226 0.00196 –
300 0.00246 0.00196 0.001 0.00158 0.00137 –
350 0.00145 0.0007 0.00116 0.00101 –
400 0.00111 0.0006 0.00088 0.00077 –

180Ta/181Ta, a = 3.3029 Å 52Cr/53Cr, a = 2.885 Å, F(Cr2) = 2.448
50 0.0084 0.00703 – 0.07322 0.07092 0.022229

100 0.00247 0.00202 – 0.02557 0.02461 0.008834
150 0.00114 0.00093 – 0.01253 0.01205 0.004662
200 0.00065 0.00053 – 0.00732 0.00705 0.002833
250 0.00041 0.00034 – 0.00466 0.0046 0.001887
300 0.00029 0.00024 – 0.00309 0.00323 0.001341
350 0.00021 0.00017 – 0.00237 0.00239 0.001
400 0.00016 0.00013 – 0.00184 0.000773

92Mo/98Mo, a = 3.147 Å 184W/186W, a = 3.1652 Å
50 0.19879 0.17753 – 0.02453 0.02236 –

100 0.06673 0.05804 – 0.00771 0.00689 –
150 0.03222 0.02774 – 0.00363 0.00323 –
200 0.01869 0.01605 – 0.00208 0.00185 –
250 0.01211 0.01042 – 0.00134 0.0012 –
300 0.00845 0.00729 – 0.00093 0.00083 –
350 0.00622 0.00538 – 0.00069 0.00061 –
400 0.00476 0.00413 – 0.00053 0.00047 –

α-54Fe/56Fe, a = 2.8662 Å, F(Fe2) = 1.013387
50 0.12385 0.12015 0.023735

100 0.04253 0.04097 0.008198
150 0.02072 0.01994 0.003995
200 0.01206 0.01164 0.002331
250 0.00782 0.00758 0.001519
300 0.00555 0.00532 0.001065
350 0.00407 0.00393 0.000787
400 0.00309 0.00302 0.000605

Note: I is the cluster model calculation, II is the result direct integration, III is the value for the diatomic molecule.
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DISCUSSION

As it can be seen from the table, there is generally
good agreement between results obtained by the cluster
method and direct integration. For alkaline metals, the
error of calculation is commensurate with the experi-
mental error in the separation factor for chemiexchange
systems [15] (except for the paper [16], where the accu-
racy in determination of the separation coefficient for
the lithium isotopes was about 3%); Note, however,
that, for exchange in solids, the possibility of establish-
ment of a real equilibrium with the internal phase of the
crystal is problematie.

A good agreement is observed also for Cr, Mo, W,
and α-Fe. Taking into account the long range of inter-
atomic interactions in the crystals, this result can be
regarded as evidence of the suitability of the cluster
approach. It can be also regarded as supporting the
assumption about the local character of isotopic effect
in crystals, similar to molecular isotopic effect. This
does not mean that the interatomic forces in crystals are
of a short-range nature: it means only that the isotopic
effect can be evaluated using the description of the total
effect of long-range forces by a molecularlike effective
local force field in the normal-mode coordinates.

It is necessary to note, that while giving reasonable
lnβ values, the cluster approach cannot reproduce the
total phonon spectrum and the corresponding thermo-
dynamic properties, for example thermal capacity. This
effect is related to an important feature of the β-factor:
in contrast to the other thermodynamic quantities, the
β-factor is primarily determined by the high-frequency
part of the spectrum and is almost independent of the
low-frequency part, which is effectively cancelled out
in calculation of lnβ. It is evident that the equilibrium
isotopic effect is an effective tool for studying local
bonding in crystals: its value is determined only by the
nearest neighbors of the isotope atoms in the lattice.
The equilibrium isotope effect can not be applied to
studying the total phonon spectrum of the crystal.

For the metals of subgroup Vb (V and Ta), the error
of calculation is significantly higher. However, the
agreement with experiment may also be regarded as
satisfactory in view of considerable anomalities in their
phonon spectrum [17]. As a result, to describe this
spectra by the Born–van Karman model, it is necessary
to introduce force constants of very high orders, a pro-
cedure that leads to a decrease in the accuracy of their
determination [18]. Thus, the quality of the force field
in the Born–van Karman model for these metals, espe-
cially vanadiun, is poor: in the original work [19], the
agreement between the experimental and calculated
curves of phonon dispersion is poor, with the highest
discrepancy being observed at high frequencies, which
primarily determine the isotopic effect value.

As to the accuracy of the calculated lnβ value in
general, presently this accuracy is as high as 10–15%,
a value that is commensurate with the experimental
accuracy of the separation coefficient for solids.

The results of calculations by the Polyakov method
exceed the results given in the table by more than an
order of magnitude; therefore, we did not present them.
It is evident, that this method is unsuitable for calculat-
ing or even estimating the β-factor for metals. This is
not surprising, because the initial data in this method
are the data on the thermal capacity which are not infor-
mative at high temperatures, because metal lattices are
characterized by low vibrational frequencies; as a
result, at the temperatures above 300 K, all these vibra-
tions are already excited, and the molar thermal capac-
ity of all metals is eventually constant. Quantum effects
appear to affect the thermal capacity at low tempera-
tures; here, however, the Polyakov method cannot be
used for another reason—it is based on a rapid conver-
gence of the expansion of thermodynamic perturbation
theory, a condition that is violated in the low-tempera-
ture range. Meanwhile this method may be used to esti-
mate the β-factors of hydrides and other simple salts
characterized by high frequencies. We think that the
main advantage of the Polyakov method is its capabil-
ity of estimating the value of the β-factor without using
the data on the frequencies of lattice vibrations; the
question of its applicability can easily be solved based
on the temperature behavior of the thermal capacity.

It is also interesting to examine the relationship
between the values of lnβ for a crystal and the corre-
sponding diatomic molecule. The table shows that gen-
erally there is no correlation. For all the alkaline metals,
the values of lnβ for the crystal exceed those for the
diatomic molecule by a factor of 2–3. For other metals
listed in the table, which are d elements, it is impossible
to establish any correlation, because these d elements
correspond to different subgroups, with the number of
valence electrons and their distribution over orbitals
(bands) both for crystals and molecules being different.

CONCLUSIONS

The fact that the simplest cluster approach to calcu-
lation of lnβ gives values similar to those obtained by
the Born–van Karman model suggests a local character
of the isotopic effect for all systems, including solids,
and allows us to recommend the local-field methods of
calculation of the β-factor. It may be very useful for
many real systems, because the cluster and similar
approaches can be easily applied to calculation of the
properties highly imperfect crystals, amorphous and
other solids with out long-range ordering. In addition,
this approach (in contrast to the Born–van Karman
approach) may be used to calculate isotopic effects for
surface exchange, which are very important in studying
solid–solution equilibria in systems of practical inter-
est.

It may be assumed, that, although the correlation
between the β-factors for crystals and corresponding
diatomic molecule is generally absent, it may be
observed in the series of similar compounds, but this
question needs further investigation.
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