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Abstract—The cluster approach to calculations of the ratio between the partition functions of isotopic forms
(B-factors), which was earlier applied to molecules and covalent and metallic crystals, was extended to ionic
crystals. It was shown that, as distinguished from molecular crystals and crystals of the other types, crystal lat-
tice fragments cut from real ionic crystals could not be used in calculations as a satisfactory approximation
because of the long-range nature of Coulomb forces. Correct cal cul ation data on 3-factors coinciding with those
obtained by the other methods can be attained if ionic clusters are calculated taking into account their real equi-
librium geometry. Various approaches to modeling short-range interatomic interactions in ionic crystals were
studied, including ab initio quantum-chemical methods and the method of empirical interatomic pair potentials.
It was shown that, among the empirical interatomic potentials, the Born—Mayer exponential potential was the
best one for calculating B-factors. The 3-factors were calculated for several ionic crystals with NaCl-type lat-

tices.

INTRODUCTION

| sotope effects offer much promise for studying sol-
vation and crystallization in solidHiquid systems, in
particular, in isotopic geochemistry. Of the greatest
importance in this field is the ability to calculate the
B-factors of solids.

Consider element X isotope exchange between sub-
stance AX in solution and BX in the solid state,

AX*(sIn) + BX(s) = AX(sIn) + BX*(s).

According to the general theory of chemical isotope
exchange, the isotope separation coefficient in this
reaction is given by

PO HIXFNX 8

Here, X* isthe heavy isotope of X, [X*] and[X] arethe
total equilibrium concentrations of isotopic atoms, and
{[X*]/[X]}; istheir ratio in the ith substance. The equi-
librium isotope separation coefficient can be calculated
theoretically astheratio

Ay x = Baxsax!Bex+/ex »

where Baxax 1S the so-called ratio between the parti-
tion functions of isotopic forms, or the B-factor [1, 2],

(Zax O |Zax:
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Here, Z are the partition functions of the AX and AX*
isotopic forms and N is the number of equivalent X
atomsthat are replaced by X*. The quant and classindi-

(BAX*/AX)

ces label the quantum and classical partition functions,
respectively. Whereas the i sotope separation coefficient
O is a characteristic of a particular isotope exchange
reaction, the B-factor characterizes a certain substance,
and its value determines the ability of the substance to
concentrate the heavy isotope in chemical isotope
exchange reactions. Knowledge of 3-factor valuesfor a
group of compounds allows us to calculate the isotope
separation coefficients for al possible reactions
between them. Precisely for this reason, the B-factor is
considered afundamental property of compounds. This
property characterizes their behavior in isotope
exchange reactions and plays the key rolein the theory
of equilibrium chemical isotope exchange.

For an arbitrary gaseous or liquid compound, the
B-factor can be calculated with an error of ~2% if the
vibrational frequencies of the isotopic forms of the

compound are known.! The equation for calculating
[-factors can be written as[1, 2]

InB = NZ

Here, N' is the number of vibrational frequencies,
u, = hov,/KT are the dimensionless, so-called reduced
frequencies; v, are the vibrational frequenciesin cm;
h is the Planck constant; k is the Boltzmann constant;

Dsmh[u/2][ } )

Dsmh[u /2]Lu

1 0Of course, if fairly accurate frequency values are known. In addi-
tion, the error increases to 5% if hydrogen isotope substitution is
considered, or if the atom undergoing replacement is linked with
hydrogen.
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cisthevelocity of light; and T is the absolute tempera-
ture.

Calculations of B-factors for solids, especialy for
crystals, encounter serious difficulties. Calculations by
(2) require knowledge of al frequencies (of the density
distribution of phonon states) for both the initial and
isotope-substituted crystals. As the density function of
phonon states is never determined from experimental
data completely, this requirement in reality means that
we must use force field models that alow the dynamic
matrix to be constructed and the dependence of fre-
guencies on the wave vector to be calculated. The Inf3
valueisthen calculated by Eq. (2), which, for acrystal,
reduces to the integral over the first Brillouin zone.
Such calculations were performed for LiFin [3], where
the integration was replaced by the summation over a
limited number of points.

The absence of phonon spectrum data for several
practically important (especially for geochemistry)
crystals has led to the development of methods for cal-
culating B-factors that do not use interatomic force
models [4-6]. These methods in essence reduce to
expressing the thermodynamic functions of a crystal
directly through its heat capacity without invoking the
phonon spectrum and to the use of experimental heat
capacities and their temperature dependencesfor calcu-
lating B-factors.

All these methods necessarily use crystal lattice
symmetry; therefore, they can only be applied to calcu-
late the B-factors of perfect crystals. At the same time,
studies of natural objects and, especially, isotope sepa-
ration during crystallization require using methods
applicable to calculate the 3-factors of atoms in amor-
phous substances with developed surfaces of crystalli-
zation nuclel and, especially, the surfaces of solids at
the instant of their formation. The required approach,
well-known in isotope effect theory, is the cluster
approach based on calculations of fragmentary models
of molecules that include the nearest environment of
the atom involved in exchange. The purpose of this
work was to adapt this approach to calculations of the
[-factors of ionic crystals.

CLUSTER MODEL CALCULATIONS
OF THE B-FACTORS OF IONIC CRYSTALS

The simplest approach to calculating In3 isthe clus-
ter method; that is, calculations of the normal vibration
frequencies of clusters, or fragments of amolecule or a
solid including the nearest environment of the atom
involved in exchange. This approach is based on the
well-known concept of the localization of isotope
effects, according to which the In3 value is only deter-
mined by the nearest (sometimes also next-nearest)
environment of the atom replaced by itsisotope [7]. In
practice of applying the cluster approach to solids, this
reduces to calculating the normal vibration frequencies
of small fragments of a solid, that is, clusters, by the
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methods of the theory of normal vibrations of mole-
cules[8]. AsInf only depends on the nearest environ-
ment of the atom being replaced, theIn 3 parameter cal-
culated for acluster should rapidly convergetoitsvalue
for the real solid as the number of atoms in the cluster
increases. Our calculations for metals showed that, in
the majority of cases, even the smallest possible cluster
(athree-dimensional harmonic oscillator) gaveInf3 val-
ues comparable with those obtained using more com-
plex models[9].

Unfortunately, this approach cannot be directly
transferred to ionic crystals because Coulomb forces
act at large distances. The dynamic matrix (GF matrix)
of ionic crystals cannot therefore be considered quasi-
diagonal for ionic crystals as distinguished from mole-
cules and crystals of the other types. The off-diagonal
constants corresponding to Coulomb forces decrease
approximately proportionaly to 1/n’, where n is the
number of the matrix subdiagonal. At the same time,
the number of these constants increases as n?. Our pre-
liminary cal cul ations showed that the 3-factor of acrys-
tal calculated using the force constantstransferred from
an infinite crystal lattice converges very slowly as the
size of the cluster increases. In practice, this approach
either substantially overestimates (-factors or, for
attaining convergence, requires calculating clusters of
such a size that the use of the cluster method becomes
inexpedient or even impossible. This prompted us to
check the convergence of Inf3 values for ionic clusters
obtained by a method different from mechanically cut-
ting a fragment from a lattice, namely, by constructing
clusters from ions in such a way that they had the real
geometry of acluster of agiven size. Itisshowninthis
work that the In[3 values for these clusters rapidly con-
verge to those obtained by other independent methods.
In all probability, the reason for the fast convergenceis
the balancing of the divergence of the lattice sums by
the relaxation of lattice parameters (first and foremost,
internuclear distances) in clusters.

CALCULATION OF FORCE CONSTANTS
FOR IONIC CRYSTAL LATTICES

With crystals, the use of natural vibrational coordi-
nates (interatomic distance and valence angle varia
tions) becomes very inconvenient, because these
parameters cannot be defined unambiguously. For this
reason, we use Cartesian displacements of atoms from
their equilibrium positions as vibrational coordinates.
The Cartesian displacement Ax, of atom L along x is
defined as

Ax = x (1) - XE,
where x, (t) is the instantaneous x, value at timet and
. isthex,_ value at equilibrium.
Below, we aso denote Cartesian displacements by
g, (A%, Ay, , or Az ). Force constants F in the harmonic
approximation are the second derivatives of the poten-
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CALCULATION OF THE RATIOS BETWEEN THE REDUCED PARTITION FUNCTIONS

tial energy U,,, of the cluster with respect to vibrational
coordinates calculated at the point of equilibrium (that
is, at the point where all Cartesian displacementsq = 0).
For an ionic crystal, a force constant can conveniently
be represented as the sum

F= Frep+ FCouIv

where F,, is the contribution of repulsion, which is
determined by short-range repulsive forces, and F,, is
the contribution of Coulomb electrostatic forcesthat act
between charged ionsin the crystal lattice.

Calculations of Force Constants
for a Generalized Pair Potential

The energy of a system of particles whose interac-
tion is described by a pair potential is written in the
most general form as

Ui = N Z ULwms

M#L

where u,,, depends on r , which is the distance
between arbitrarily selected L and M atoms. The factor
1/2 prevents doubly taking into account interactions
within each pair of atoms twice.

The first derivative of energy U, with respect to
coordinate Ax, is

aUtot
0AX,

— BauUDDarL' [ (3)
= 2 Thr,008x

The expressions for the force constants are obtained
as the second derivatives of U, with respect to g, gy
at equilibrium g = 0. Following the terminology
accepted in the theory of molecular vibrations, we
apply the term “diagona” to those force constants that
refer to only one coordinate each and are therefore the
diagonal elements of the F force constant matrix. The
force constants for different coordinates, which
describe their dynamic interaction, will be called “off-
diagonal”

For adiagonal force constant, we have
Eazum%
PAX O

Z (o uLIDDarLID @ULDEB ryd ()
Oor?, 0LoAx EBruD[BAXD

where r ; is the distance between atoms L and I.

Consider off-diagonal force constants. If two unlike
coordinates involve one atom L, that is, correspond to
its displacements in different directions, we have

D azutot |:| — QZUUDDOI’U DDaruD
LoAx oAy,H z Darf, DQAXLDQ)AyLD )
@ULDD 0’ My D}
EBrUDQ)AxLAyL
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If two coordinates refer to different atoms M and L,
then

DazULMD[prLMDDarLM 0
2 ,0t0Ax Utaay,

] aZUtot |:|:
LoAx 0Ay,H gor

(6)

B’“LMDD Or iy 0
EBrLMDEBAxLAyM

To use (4)—6) in practice, we must find explicit
expressions for thefirst and second derivatives of inter-
atomic distance r; with respect to Cartesian displace-
ments. Taking into account that

1/2
ry = (% =%)°+ (i =¥9)’+ (z2-2,)%) (7
the first derivative of r,; with respect to the vibrational
coordinate at equilibrium is given by
_ XL~ Xm

Prwo
mAXLDq:o TR

DarLMD — XL _XM (8)
Q)AXMDq =0 Mim

The second derivative of the interatomic distance with
respect to the coordinate q = Ax; hasthe form

@®°r, O

2+ (2. -2 9
EBAXEDq:O Ym) + (2L —2u))rim

= ((y.—

Calculations of the second derivatives of r, with
respect to different coordinates should be performed
taking into account two cases. In the first case, both
coordinates refer to the same atom L. The differentia-
tion gives

o°r
L m = —(X, —Xm) (YL —

= 10
Lonx oAy, - o (10)

Ym) r[‘?l\,/l .
Inthe second case, the two coordinatesrefer to different

atoms L and M. If these are analogous coordinates, for
instance, Ax, and Axy,, then

N aZI’LM 0

2 2y -3
LdAX 0AXH, - o —Ym) = (Z=2u))rou-(11)

= (—(y
For unlike coordinates, we have

|:| aerM |:|

12
LOAX_0AYVH, - o (12)

= (XL —Xm) (YL _yM)r[:l?/I-

The Coulomb Component of Force Constants

The Coulomb energy of apair of atomsL and M is
EQ, Qu/r.m, Where the numerical constant E depends
on the units that we use and Q; are the charges of the
atoms. The equations for the Coulomb component of
force constants are obtained as the second derivatives of
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Ucou With respect to g, and gy, at the g =0 point. Using
(8)—12), we obtain

N
= -EQ_ Z Qri{-3(x. _XI)2 + rEI}
1= 1
(1#L)

for the diagonal force constant;

0] 62UCouI ]
Loax 08y U, _

N
= EQ_ z 3Q|r[|5{ (Yo=Y (X =)}
=1
(1£L)
for two unlike coordinates describing the displace-
ments of one atom;

O 62UC0uI ]
LoAX 08X, -

= —EQQurin{ 304 —xw)’ ~ v}

for two analogous coordinates describing the displace-
ments of different atomsM and L, for instance, Ax, and
Axy; and

O 62UCOU| []
Loayyoax L, -,

= —EQ Qurim{3(Ye = Yun) (X, — Xu)}
for two unlike coordinates of different atoms.

The Contribution of Short-Range Forces
to Force Constants

To estimate the contribution of short-range repulsive
forces F,, to force constants, we must introduce some
partlcular repulsive potential. Only those empirical
potentials that contain minimal numbers of parameters
that are easy to determine from experimental data are of
practical value. We therefore selected two-parameter
potentials. A two-parameter repulsion potential func-
tion U,,, model was considered by Kellermann in his
classic work [10]. The approach suggested by Keller-
mann is based on the assumption that repulsive forces
inionic crystalsare central and, unlike Coulomb forces,
only act between the nearest neighbors. The A and B
model parameters are introduced through the deriva
tives of the repulsive potential u,., as

[durep(r)} _ e'B 0 Uyep(1) _ A
dr Jr=r,  ard dr® | _,
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wherer, is the equilibrium interatomic distance in the
crystal and eisthe elementary charge. The A and B val-
ues can be found from the conditions of crystal lattice
equilibrium

B = —(2/3)ayZ’, A = 12ry/Ke + (4/3)ay 2%, (13)

where a, is the Madelung constant, Ze is the charge of
the ion, and K is the compressibility of the crystal.
Equations (13) allow potential parameters to be deter-
mined from experimental data, namely, from elastic
constants and equilibrium interatomic distances in the
crystal. These equations determine potential derivatives
rather than the potential itself, and the analytic form of
the u,.,(r) potential can therefore be sel ected freel y; that
is, any two-parameter potential can be used. We will
comparatively analyze three two-parameter potentials
that are used most extensively.

The Born—Landé Power Potential
This potential is given by

Ug(r) = Cr", n=-1-A/B,
C = e’B? —(2B+A)/B (14)
4(B+A) °

For this simplest potential, the derivative of repul-
sion energy U, with respect to a coordinate and the
contribution of repulsive forcesto aforce constant are

_ o PUen9un
anL = 2 Cor, 08X,
mor L -n-1
=NCY Gaxdt
| #L
[9°U, - _nC [BZrUDr_n_l
2 - L=,
0oax O, _, & 1

+n(n+1)CZDa Ly i,

I1#L

or,

-n-1
”Cz %AXLaAyLD L

09w 09T, -n-20
—(n+
"+ D pax oAy B

aerM [].-n-1
_nC%AXLaAyMDrLM

_ [ﬁrLMDDarLMD o o0
(n+ D) pax Doy, 0

0 Ve [
Lonax oAy U, - o

2
0 9Ye o _
LoAx 08y, - o
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wherer , isthe distance between atomsL and |, and the
summation is only over the nearest neighbors.

The Born—-Mayer Exponential Potential

Uep(r) = Cexp(-rl/o), o = —Bry/A,
22
_€eB D_ﬁj
C = APTEY

(15)

For this potential, we have

_ U)uredjﬂaru ]
6AxL Z

Cor,,OCaax, 0
101y Dex rL|D
Z Q)AXL 0 ol

0 0°U
@AXLaAyL h=0

GZ

% azru D 1|:|ar|_| DDaru
Ax 0Ay, 0~ oLbax O0bAy,!

2
190 0 - _Copll ]
Lonx 08yyH, - o o oU

y aerM 0 1|:prLM|:||]arLM
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The Gauss Repulsion Potential
This potential has the form

Ue(r) = Cexp(=ar?), o = (B—A)/2Br,,

252
¢’B B—A]
ar,(B—A) P08 O

(16)
C=-

Like the Born—Mayer potential, the Gauss repulsion
potential isexponential, but it decreases more rapidly
as the distance increases. This potential is exten-
sively used largely because it admitsthe factorization
exp(—ar?) = exp(-ax?)exp(—ay?)exp(-0z*) and some-
times allowsthe Schrddinger equation to be solved ana-
Iytically.

For this potential,

_ H)Uredjmaru 0
anL Z Cor ,0Cpax, 0

= -2Ca’y Q}ALI Sruexp(-ard),

I1£L
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2
D&D = 2Ca exp(—a r2
Q)AxLaAyLDq -0 |¢ZL p( L)

Dl:l a I'|_| 2 Daru Dljaru
* Upax aby, ot (1_2arL')Q9AxLDQ9AyL%'
2
N 9V [

ax Aty —2Caexp(—ariy)
q:

DD arLM 0 2 \[ProvPrim
I L L +(1— .
* Upax any0 v+ ZurLM)Q)AXLDQ)AyM%

CALCULATIONSOF In3 FORVARIOUS MODELS
OF FORCES IN A CRYSTAL LATTICE

Coulomb forces in ionic crystals are long-range
forces and, in this respect, fundamentally differ from
short-range interatomic forces. For thisreason, equilib-
rium interatomic distancesinionic clustersof finitesize
differ from equilibrium distances in infinite crystals.
The same is true of atoms situated close to crystal lat-
tice defects, primarily, of atomson surfaces. Asaresult,
force constants in a cluster depend on its size and the
positionsof atomsinit. Similarly, the force constants of
a surface atom differ from the force constants of an
atom situated deep inthe crystal lattice and, in addition,
depend on where the atom is situated on the surface. We
have already mentioned that, because of the long-range
character of Coulomb interactions, the geometry and
force field of the real crystal cannot be transferred to a
cluster. This especially refers to isotope effect calcula-
tions, because isotope exchange occurs during crystal
growth rather than between a crystal already formed
and a solution; that is, it occurs in small ionic clusters
and on the surface of agrowing crystal. The atoms that
are in the inner space of the crystal cannot noticeably
participate in isotope exchange because of extremely
low diffusion ratesinionic crystal lattices.

Before calculating cluster force constants, we must
determine its equilibrium geometry. For this purpose,
we created a model of a cluster in a zeroth approxima-
tion, which was a crystal lattice fragment in which
atoms interacted with each other through Coulomb
forces and a pair repulsion potential. The interatomic
distances in the zeroth-order cluster were selected
either as the distances transferred from the real crystal
lattice or as values obtained by increasing or decreasing
them (stretched or compressed clusters). The cluster
was then allowed to relax to equilibrium interatomic
distances by calculating the classical ionic motion tra-
jectories using the Runge-Kutta method [11]. To
ensure convergence to the equilibrium geometry (that
is, to damp cluster oscillations caused by the deviation
of the zeroth-approximation geometry from equilib-
rium and thereby by its excess energy), we introduced
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Tablel. Caculations of vibrationa frequencies and Inf3 for
molecular models and LiF clusterswith the use of empirica in-
teratomic potentials and ab initio quantum-chemica methods

Method Vimae ML InB i A
LiF
| 946 (5Li), 894 ('Li) | 0.07113 | 1.56386
I 1348, 1273 0.12350 | 1.56297
[ 904, 854 0.06714 | 1.46621
v 1134, 1071 0.09574 | 1.53246
\Y 1026, 969 0.08209
\ 959, 906 0.07383 | 1.52534
Vi 986, 931 0.07718 | 1.56035
FLi—F
| — — —
[ 1317, 1233 0.16690 | 1.65798
" 878, 822 0.09380 | 1.60249
\ 1026, 960 0.11217
Li,F,
I 678, 641 (0.0812) | 1.73700
[l 973, 934 0.14080 | 1.73161
" 696, 668 0.08102 | 1.67025
VIl 666, 639 0.05434 | 1.62889
IX 823, 791 0.11731 | 1.67114
v 797,771 0.10887 | 1.68632
\Y 743,719 0.09853
IX 724,700 0.09576 | 1.71561
VI 718, 694 0.09376 | 1.68343
VIi 721, 697 0.09552 | 1.71335
LijsFia, a3 x 3x 3cluster with Li™ in the center
| - - -
[l 896, 896 0.13810 | 1.99703
" 693, 693 0.08727 | 1.99720
v 646, 636 0.08008
LigsFep, a5 x 5% 5cluster with Li™ in the center
I 757, 757 0.09314 | 1.98329
" 756, 756 0.09168 | 1.98153

Note: |, experiment; 11, the Born—Landé potentid; 111, the Born-Mayer
potentia; 1V, SBK RHF 4-31G*(d); V, SBK RHF 6-311G* (3d);
VI, SBK RHF 6-311++G**(3d); VI, RHF 6-311++G** (3df);
VIII, the Gauss potential; and IX, SBK RHF 3-21G*(3d);
given in parentheses is the estimate based on known fre-
guencies and their contribution to the Inf3 value obtained in
quantum-chemical calculations (see[15]).

adissipative force proportional to the velocity of parti-
clesinto these calculations.

The vibrational frequencies and the Inf3 value for a
cluster were calculated as follows. A 3N x 3N GF
matrix in Cartesian coordinates was constructed, where
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N is the number of ions in the cluster. Next, normal
vibration frequencies were calculated for both the ini-
tial (unsubstituted) cluster and for the cluster in which
one of theions (the central ion) was replaced by itsiso-
tope. After frequency calculations, the Inf3 value was
determined by (2).

The pair repulsion potential parameters were deter-
mined from the compressibility of the crystal and the
equilibrium interatomic distanceinit by (13)—(16). The
compressibility was calculated as (1/K) = (¢, + 2¢;,)/3,
where c,; and c,, are the elastic constants from [12].
The calculation results show that, if the central ion is
involved in isotope exchange, the In3 value rapidly
converges as the size of the cluster increases.

For comparison, Inf3 values for NaCl-type crystals
were also calculated according to Kellermann [10]. In
these calculations, a6 x 6 dynamic matrix of the crystal
lattice was constructed, whose elements were wave
vector functions, and vibrational frequencies of the
unsubstituted and fully substituted crystals were calcu-
lated for wave vector values uniformly distributed in
thefirst Brillouin zone (atotal of 6000 frequencies tak-
ing degeneracy into account). As previoudly, the Inf3
value was calculated by (2). The dynamic matrix of the
crystal was constructed in the Kellermann method only
based on the A and B parameters determined by (13)
rather than using particular potentials.

In addition, we compared our results with the In3
values calculated by one more independent method
based on the use of the temperature dependence of heat
capacity astheinitia data[6].

A COMPARISON OF THE QUALITY
OF VARIOUS POTENTIALS

For performing calculations, we must estimate the
quality of different potentials, that is, determine the
degree of approximation that various potentials give.
For this purpose, we calculated the geometry, vibra-
tional frequencies, and In3 for the LiF molecule and the
Li,F, cluster with the use of the empirical potentials
described above and ab initio guantum-chemical meth-
ods. The quantum-chemical calculations were per-
formed with the PC GAMESS package [13], version 5.2,
and the basis sets incorporated in it. The calculations
were performed using various basis sets, which either
included all electrons or the effective core potentials
suggested by Stevens et al. [14] (the SBK potentias).
The calculation results are compared in Table 1, which
also contains the experimental data and the data from
[15], where the LiF and Li,F, molecules were calcu-
lated using an extended basis set taking into account
electron correlation at the level of second-order pertur-
bation theory (MP2). Table 1 shows that the results of
guantum-chemical calculations depend on the basis set
used and obtaining vibrational frequencies close to
those observed experimentally requires using fairly
extended basis sets. Note that this result differs from
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Table 2. Inf3 values for models of ionic crystals with NaCl-type lattices

Salt | T.K | lan.m. | InBKeII | InBclust | InBterm
OLi/ Li
LiF 250 0.09590 0.11541 0.12625
K = 1.50376 300 0.07113 0.08341 0.09140 0.08959
ro=2013A 350 0.05609 0.06291 0.06901
LiCl 250 0.06314 0.07043 0.07583
K =3.36700 300 0.04866 0.05006 0.05395 0.04395
rg=2.57 A 350 0.03513 0.03733 0.04025
LiBr 250 0.05564 0.06049 0.06485
K =4.25532 300 0.04035 0.04284 0.04596 0.03871
ro=2751A 350 0.03049 0.03186 0.03420
LiJ 250 0.04627 0.04906 0.05244
K =5.81395 300 0.03330 0.03461 0.03702 0.03132
ro=3.006 A 350 0.02503 0.02568 0.02747
39K /41K
KF 250 0.00358 0.00423 0.004487
K =3.27869 300 0.00255 0.00295 0.003134
ro=2.674 A 350 0.00190 0.00218 0.002311
KCl 250 0.00235 0.00288 0.003063
K =5.71429 300 0.00166 0.00201 0.002134 0.002184
ro= 350 0.00122 0.00148 0.001571
KBr 250 0.00208 0.00256 0.002708
K =6.75676 300 0.00146 0.00178 0.001886 0.001982
ro=3.30 A 350 0.00108 0.00131 0.001388
Kl 250 0.00174 0.00217 0.002297
K =8.54701 300 0.00121 0.00151 0.001598 0.001708
ro=3.533A 350 0.00089 0.00111 0.001176
24M g /26M g
MgO 250 0.01977 0.04131 0.04238
K =0.625 300 0.01466 0.02949 0.03027 0.0289
ro=2.104 A 350 0.01125 0.02204 0.02264
“ca**Ca
CaoO 250 0.01490 0.02487 0.02535
K =0.87209 300 0.01098 0.01757 0.01792
ro=2401 A 350 0.00840 0.01305 0.01331
EeElel
LiCl 250 0.00417 0.00483 0.005219
300 0.00304 0.00338 0.003657
350 0.00231 0.00250 0.002702
NaCl 250 0.00361 0.00434 0.004607
300 0.00255 0.00303 0.003216
350 0.00190 0.00223 0.002370
KCl 250 0.00291 0.00355 0.003772
300 0.00204 0.00247 0.002629
350 0.00151 0.00182 0.001936
160/180
MgO 250 0.04311 0.08765 0.08987
300 0.03193 0.06296 0.06461
350 0.02449 0.04726 0.04853
CaOo 250 0.04587 0.07351 0.07490
300 0.03377 0.05246 0.05348
350 0.02579 0.03922 0.03999

Note: The Infy, values were calculated for clusters of 125 atoms (5 x 5 x 5) using the Born—Mayer potential; InByq; were obtained
according to Kellermann; InBem, by the new method [6] based on experimental heat capacity data (taken from [6] for MgO); and
the InBy . values were calculated for the corresponding diatomic molecules using the vibrational frequencies from [13] (given for
comparison); K is the compressibility in 10712 cm?/dyn.
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that reported for ion—dipole interactions [16] because,
as distinguished from ion—dipole complexes, the force
constant of an ionic bond is to a substantial extent
determined by a correct estimate of charge transfer
from the metal to the halogen atom. On the other hand,
the use of effective core potentials substantially facili-
tates quantum-chemical calculations but has virtually
no effect on the In value, as has been shown in [16].

As far as the empirical interatomic potentials are
concerned, they give Inf3 estimates of a quality compa-
rable with that of experimental estimates and the results
of Inf3 calculations with extended basis sets. The reason
for thisisquite obvious. Indeed, the specified potentials
are constructed based on experimental elastic constants
and, therefore, effectively take into account the actual
electronic structure of the crystal. Precisely for thisrea-
son, quantum-chemical calculations require the use of
fairly extended basis sets, whereas the empirical inter-
atomic potentials easily give correct interatomic dis-
tance values, vibrational frequencies, and Inf3 values.
We studied three empirical potentials, namely, the
Born—-Landé power potential, the Born—Mayer expo-
nential potential, and the Gauss exponential potential.
According to Table 1, the Born—Landé potentia is too
stiff and overestimates the Inf3 values, whereas the
Gauss potential is, conversely, too soft and givesincor-
rect frequency values when the harmonic approxima:
tionisused. We mentioned this property of Gauss func-
tionsin [17].

It followsthat it is expedient to use the Born—-Mayer
exponential potential of repulsive forcesfor calculating
Inf3 values and equilibrium isotope separation coeffi-
cientsfor large-sized clusters.

Table 2 contains the results of our 3-factor calcula-
tionsfor several crystalswith NaCl-type lattices by var-
ious methods (for comparison, the B-factorsfor the cor-
responding diatomic molecules are also given). For all
crystals, including CaO and MgO, the effective charges
of ions were set equal to +1. For calcium and magne-
sium oxides, this choice of charges was largely based
on charge calculations by ab initio quantum-chemical
methods. For comparison, Table 2 contains the results
obtained not only by cluster methods but also by the
methods mentioned above and oriented toward calcula-
tions of infinite crystal | attices, namely, the Kellermann
method and the new method for calculating B-factors
based on the literature data on the temperature depen-
dence of heat capacity suggested by usin [6]. To illus-

trate the heat capacity method, the InBz4Mg/26Mg value

was taken from [6]. Table 2 shows that the results
obtained by all methods coincide to within the attain-
able accuracy of crystal lattice calculations (see [9]
about the attainable accuracy).

To summarize, the cluster method can be used to
calculate the B-factors of ionic crystals. It should then
be modified to attain convergence, namely, the Inf3 val-
ues should be calculated for ionic clusters with their
actual geometries rather than for fragments mechani-
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cally cut from lattices. Increasing the cluster size then
causes rapid convergence of In[3 to its value for an infi-
nite crystal |attice determined by the other, more com-
plex methods.

ACKNOWLEDGMENTS

Thiswork was financialy supported by the Russian
Foundation for Basic Research, project no. 00-05-
64783.

REFERENCES

1. Bigeleisen, J. and Mayer, M.G., J. Chem. Phys., 1947,
vol. 15, no. 5, pp. 261-267.

2. Varshavskii, YaM. and Vaisberg, S.E., Usp. Khim,, 1957,
vol. 26, pp. 1434-1468.

3. Rock, PA., ACSSymp. Ser., vol. 11: I sotopes and Chem-
ical Principles, Rock, PA., Ed., Washington: Am. Chem.
Soc., 1975, pp. 131-162.

4. Polyakov, V.B. and Kharlashing, N.N., Geochim. Cos-
mochim. Acta, 1995, vol. 59, no. 12, pp. 2561-2572.

5. Polyakov, V.B., Zh. Fiz. Khim., 1996, vol. 70, no. 2,
pp. 346-350.

6. Knyazev, D.A. and Bochkarev, A.V., Zh. Fiz. Khim.,,
1999, vol. 73, no. 5, pp. 875-879.

7. Knyazev, D.A., Myasoedov, N.F., Bochkarev, A.V., Gla-
dun, L.V., and Blank, A.D., Zh. Fiz. Khim., 1986, vol. 60,
no. 12, pp. 2943-2947.

8. Wilson, E.B., Jr., Decius, J.C, and Cross, PC., Molecular
Vibrations: the Theory of Infrared and Raman Vibra-
tional Spectra, New York: McGraw-Hill, 1955. Trans-
lated under the title Teoriya kolebatel’nykh spektrov
molekul, Moscow: Inostrannaya Literatura, 1960.

9. Bochkarev, A.V., Zh. Fiz. Khim., 1998, vol. 72, no. 8,
pp. 1512-1516.

10. Kellermann, E.W., Philos. Trans. Roy. Soc. A (London),
1940, vol. 238, pp. 513-548.

11. Forsythe, G.E., Malcolm, M.A., and Moler, C.B., Com-
puter Methods for Mathematical Computations, Engle-
wood Cliffs, New York: Prentice-Hall, 1977. Trand ated
under the title Mashinnye metody matematicheskikh
vychislenii, Moscow: Mir, 1980.

12. Landolt-Bérnstein Handbook (Numerical Data and
Functional Relationships in Science and Technology),
New Series, Group 3: Crystal and Solid Sate Physics,
Berlin: Springer, 1969.

13. Granovsky, A.A., http://classic.chem.msu.su/gran/
gamess/index/html.

14. Stevens, W.J., Basch, H., and Krauss, M., J. Chem.
Phys., 1984, vol. 81, no. 12, pp. 6026—-6033.

15. Solomonik, V.G. and Sliznev, V.V., Zh. Srukt. Khim.,
1998, val. 39, no. 2, pp. 196-209.

16. Bochkarev, A.V., Zh. Fiz. Khim., 2001, vol. 75, no. 9,
pp. 1713-1716.

17. Sazonov, A.B., Magomedbekov, E.P, Bochkarev, A.V.,
Glotova, 1.I., and Ozerov, R.P, Zh. Fiz. Khim., 2000,
vol. 74, no. 4, pp. 680-688.

No. 8 2003



