ΓΟСΑΓΡΟΠΡΟΜ СССР

Московская ордена Ленина и ордена Трудового Красного Знамени сельскохозяйственная академия им. К.А.Тимирязева

№212-В88 УДК 541.165

Д.А.Князев, И.В.Шиманогова, А.В.Бочкарев

ОСОБЫЕ ТОЧКИ ЧАСТОТНОЙ ФУНКЦИИ МОЛЕКУЛЫ И НЕВОЗМОЖНОСТЬ ПОСТРОЕНИЯ УНИВЕРСАЛЬНОГО АЛГЕБРАИЧЕСКОГО РАЗЛОЖЕНИЯ *β*-ФАКТОРА

МОСКВА-1988 г.

В расчетах изотопных эффектов особую роль играет отношение приведенных статсумм по состояниям изотопных форм (*β*-фактор).

В приближении гармонический осциллятор — жесткий ротатор методами статистической термодинамики β-фактор выражается через колебательные частоты и температуру формулой:

$$\ln \beta = \frac{1}{L} \sum_{i=1}^{N} \ln \beta_i = \frac{1}{L} \left\{ \sum_{i=1}^{N} \ln \frac{u_i^*}{u_i} - \frac{1}{2} \sum_{i=1}^{N} (u_i^* - u_i) + \sum_{i=1}^{N} \ln \frac{1 - \exp(-u_i)}{1 - \exp(-u_i^*)} \right\}.$$
 (1)

Здесь $u_i = hc\nu_i/kT$ — так называемые приведенные частоты, h — постоянная Планка, c — скорость света, ν_i — колебательные частоты в см⁻¹, N — число колебательных степеней свободы молекулы, L — число замещенных атомов. Знак * здесь и ниже обозначает величину, относящуюся к тяжелой изотопной форме. Последние два члена правой части формулы (1) отражают вклад в ln β колебательных степеней свободы молекулы, причем второй член представляет собой разность нулевых колебательных энергий, а третий член отражает вклад колебательного возбуждения. Первый член правой части формулы (1) отражает вклад поступательных и вращательных движений и выражен через колебательные частоты с помощью теоремы Теллера — Редлиха [7]. Для простых молекул частоты изотопных форм ν_i и ν_i^* известны из эксперимента, но в большинстве случаев их находят путем решения прямой колебательной задачи, исходя из силового поля и геометрических параметров молекулы.

Расчеты изотопных эффектов по формулам, аналогичным формуле (1), начались задолго до широкого внедрения электронно-вычислительных машин в практику научных исследований. Это обстоятельство привело к появлению ряда способов приближенного расчета β -факторов, причем некоторые из этих методов позволяют оценить величину $\ln \beta$, минуя промежуточное вычисление колебательных частот ν_i . В период создания основным предназначением этих методов было облегчить вычисление β -фактора.

В настоящее время в связи с тем, что все расчеты проводятся на ЭВМ, приближенная оценка численных значений β -фактора с помощью упомянутых соотношений утратила смысл. Однако, совершенствование указанных соотношений продолжается в связи с тем, что они применяются для целей интерпретации величины $\ln \beta$, то есть исследования связи химической природы молекулы с ее равновесными изотопными эффектами.

Формула же (1), несмотря на то, что она довольно удобна для расчета, непригодна для целей интерпретации изотопных эффектов. Это связано прежде всего с тем, что основными параметрами в ней являются колебательные частоты ν_i и ν_i^* . Колебательные частоты в принципе зависят от всех характеристик молекулы, а не только от характеристик замещаемого атома и его ближайшего окружения. Принадлежность частоты к той или иной колебательной координате, отражаемая ее отнесением, поэтому в общем случае носит условный характер. При изменении молекулярных параметров происходит изменение вклада различных колебательных степеней свободы в различные частоты колебаний и могут наблюдаться (при сближении частот) явления типа резонанса, когда частоты включают в себя значительный вклад удаленных координат и становятся полностью нехарактеристичными. При дальнейшем изменении параметра в этом случае происходит изменение отнесения ("перестановка") частот [13]. В частности, отнесение частот часто меняется при дейтерировании. По этой причине нельзя ожидать, что вклады i-й пары колебательных частот в $\ln \beta$, обозначенные в формуле (1) как $\ln \beta_i$, будут содержательно описывать зависимость от

природы молекулы. Более правильным является толкованиие величины ln β в терминах строения молекул — связей между атомами, валентных и двугранных углов, для чего требуются соответствующие представления.

В настоящее время предложены и применяются различные методы интерпретации, основанные на приближенных представлениях $\ln \beta$ в виде алгебраических функций силового поля и геометрических параметров молекулы. Это прежде всего предложенные Бигеляйзеном и Ишидой [2] аппроксимации $\ln \beta$ полиномами, а также их многочисленные модификации [1,3–5,11,12]. Существо данного метода состоит в том, что величина $\ln \beta$ (или β) аппроксимируется рядом по ортогональным полиномам с учетом нескольких первых членов. В качестве аргумента полиномов при этом используются $\Delta \operatorname{Tr}(GF)^i$ или другие функции геометрии и силового поля молекулы (G — матрица кинематических коэффициентов, F — матрица силовых постоянных).

Наиболее общим видом представления Ишиды-Бигеляйзена является формула [4]:

$$\ln \beta = \sum_{j=1}^{n} W_j A_j \sum_{i=1}^{N} \left(u_i^{2j} - u_i^{*2j} \right), \qquad (2)$$

где u_i — приведенные частоты. Сумма по *i* в этой формуле с точностью до зависящего от температуры коэффициента равна $\Delta \operatorname{Tr}(GF)^i$ и, таким образом, ln β явно выражается через геометрические параметры и силовые постоянные. Числа A_j являются коэффициентами Бернулли, а W_j представляют собой так называемые "модулирующие множители", о которых следует сказать особо. Модулирующие множители являются коэффициентами, зависящими от числа учитываемых членов ряда n, от j и от наиболее высокой приведенной частоты легкой изотопной формы молекулы u_{max} . Эти множители были вычислены и табулированы Бигеляйзеном для $0 < u_{max} < 25$ при $n = 0, 1, \ldots, 6$. Появление коэффициентов W_j в математически строгом разложении (2) связано с необходимостью ускорить сходимость этого ряда, для чего авторы [1–4] прибегают к масштабированию приведенных частот путем деления их на наибольшую частоту рассматриваемой молекулы. В случае совместного анализа нескольких молекул для обеспечения единообразного подхода приходится выбирать в качестве u_{max} максимальную приведенную частоту по всем рассматриваемым молекулам. Отметим, что существенным недостатком метода ортогональной аппроксимации является его неоднозначность, которая, в частности, проявляется в том, что относительные величины вкладов в $\ln \beta$ различных молекулярных параметров зависят от величины, выбираемой в качестве u_{max} при анализе $\ln \beta$ на множестве молекул. Однако основным недостатком разложений типа (2) является неоднозначность, связанная с зависимостью этих вкладов от числа членов разложения n (см. ниже).

Другим альтернативным подходом является метод, разработанный Вольфсбергом и сотр. [8,9]. Метод представляет собой применение теории возмущений к расчету $\ln \beta$, причем в качестве нулевого приближения $\ln \beta_0$ принимается величина, которая получается, если пренебречь в матрицах *G* и *F* всеми недиагональными членами. С использованием полученной таким образом диагональной матрицы G_0F_0 рассчитываются так называемые "нулевые" частоты изотопных форм ν_{0i} и ν_{0i}^* . Эти частоты далее подставляются в точную формулу для расчета $\ln \beta$, и таким образом получается $\ln \beta$ в нулевом приближении, обозначаемый $\ln \beta_0$. Учет возмущений приводит к появлению поправок к $\ln \beta_0$, формулы для вычисления которых имеют громоздкий вид.

Основная идея Вольфсберга состоит в том, что $\ln \beta_0$ представляется в виде суммы вкладов по "нулевым" частотам ν_{0i} и ν_{0i}^* , каждая из которых (в силу диагональности G_0F_0 -матрицы) может быть ассоциирована с соответствующей колебательной координатой (изменением длины связи, угла и т.п.). Естественно, что для этого величина нулевого приближения $\ln \beta_0$ должна быть близка к точному значению $\ln \beta$.

Отметим, что в данном подходе метод возмущений применяется для вычисления поправки к собственным значениям GF-матрицы, для чего в общем случае он неприменим, так как эта матрица несимметричная [17]. Вместе с тем следует ожидать высокого качества аппроксимации $\ln \beta$ нулевым приближением $\ln \beta_0$ для тех молекул, GF-матрицы которых не имеют крупных недиагональных элементов. Именно для таких молекул метод Вольфсберга и дает в действительности хорошие результаты. Молекулы, имеющие крупные недиагональные элементы в GF-матрице, авторами [8,9] не исследовались, хотя авторы и отмечают, что для таких молекул сходимость должна быть плохой. Следует ожидать, что в данном случае результаты использования метода Вольфсберга будут неудовлетворительными. Заметим также, что понятие "нулевых частот" ν_{0i} приводит к методическим трудностям. Так, для молекулы метана при использовании полной системы естественных координат получается 10 "нулевых" частот ν_{0i} , в то время как эта молекула имеет только 9 колебательных степеней свободы и соответственно 9 нормальных колебаний. Эта трудность является следствием методической непоследовательности метода Вольфсберга. Действительно, этот метод, имея в виду представить $\ln \beta$ в терминах геометрии и силового поля, все же использует понятие колебательных частот.

Таким образом, существующие модели, при всех их различиях, сводятся к представлению $\ln \beta$ в виде простой алгебраической функции, которая после преобразований приводится к виду степенного ряда:

$$\ln \beta = \sum_{(i_1, i_2, \dots, i_n)} C_{(i_1, i_2, \dots, i_n)} \zeta_1^{i_1} \zeta_2^{i_2} \dots \zeta_n^{i_n},$$
(3)

где ζ_k — молекулярные параметры, например, силовые постоянные. При этом ряд обрывают, учитывая несколько членов.

Покажем теперь, что все разложения вида (3) являются нефизичными, то есть по коэффициентам $C_{(i_1,i_2,...,i_n)}$ и по вкладу, вносимому параметром ζ_k в функцию (3), ничего нельзя сказать о вкладе, который этот параметр действительно вносит в $\ln \beta$. Для этого, очевидно, достаточно показать, что получаемый по формуле (3) вклад параметра и производная $\frac{\partial \ln \beta}{\partial \zeta_k}$ по нему зависят от максимальной степени n, т.е. от числа учитываемых членов разложения (3). Для доказательства этого заметим, что все разложения $\ln \beta$ являются разложениями функции вида

$$\ln \beta = \varphi \left(\nu_1, \dots, \nu_N \right) = f \left(\lambda_i \left(\zeta_1, \dots, \zeta_n \right) \right), \tag{4}$$

где $\lambda_i(\zeta_1, \ldots, \zeta_n)$ — корни векового уравнения, представляющие собой ветви многозначной функции $\lambda(\zeta_1, \ldots, \zeta_n)$. Найдем особые точки функции $\lambda(\zeta_1, \ldots, \zeta_n)$. Эта функция является алгебраической функцией вида

$$\det\left(\lambda E - GF\right),\tag{5}$$

где *E* — единичная матрица, *G* и *F* — матрицы кинематических коэффициентов и силовых постоянных, соответственно. В развернутом виде функция (5) имеет вид

$$\lambda^N + C_1 \lambda^{N-1} + \ldots + C_{N-1} \lambda + C_N = 0, \qquad (6)$$

где C_i — сумма главных миноров *i*-го порядка матрицы GF, в частности, $C_1 = \text{Tr}(GF)$ и $C_N = \det(GF)$. Так как эти коэффициенты представляют собой суммы произведений силовых постоянных, являющихся константами, обратных масс атомов и обратных длин связей на синусы и косинусы валентных углов, то многозначная функция λ не имеет в конечной части комплексной плоскости полюсов и существенно особых точек. Таким образом, единственными особыми точками функции λ являются точки ветвления. Найдем положение этих точек для некоторых простых молекул, для которых функция $\lambda(\zeta_1, \ldots, \zeta_n)$ выражается в явном виде. На рис.1 представлено расположение особых точек для молекулы H₂O при замещении H₂O/HDO ($\zeta = \mu_{\rm H}$). На рис.2 изображено положение особых точек для молекулы HCN ($\zeta = \mu_{\rm H}$).

Особые точки в этом случае $\mu_{1,2}^* = 0.49 \pm i0.33$. Это означает, что степенной ряд Тейлора по приращению обратной массы

$$\Delta\lambda_{\mathrm{T/H}} = \lambda'_{\mu}(\mu_{\mathrm{H}})\Delta\mu + \frac{1}{2!}^{N}\lambda''_{\mu}(\mu_{\mathrm{H}})\Delta\mu^{2} + \dots(\Delta\mu = \mu_{\mathrm{T}} - \mu_{\mathrm{H}})$$
(7)

в данном случае будет расходящимся, что, в частности, исключает использование формул, основанных на линейном приближении $\Delta \lambda = const \cdot \Delta \mu$.

Таким образом, если мы желаем получить аналитическое представление зависимости $\ln \beta$ (или β) молекулы от какого-либо молекулярного параметра ζ , от которого эта величина зависит (здесь ζ может быть геометрическим параметром, или массой какого-либо атома, или силовой постоянной, или какой-либо функцией от них), то если этот ряд будет степенным рядом (т.е. рядом Тейлора) по ζ , то он принципиально будет иметь ограниченный и притом заранее неизвестный радиус сходимости. Это обстоятельство усматривается непосредственно из формулы (1). Действительно, в соответствии с теорией степенных рядов многозначных функций [16] радиус сходимости не превышает расстояния на комплексной плоскости от точки ζ_0 , в которой ведется разложение β (или $\ln \beta$), до ближайшей точки ветвления функции $\lambda(\zeta)$.

Рис. 1. Положение особых точек функции $\lambda = \lambda(\mu_{\rm H})$ в комплексной плоскости аргумента $\mu_{\rm H}$ для молекулы H₂O ($\mu_{\rm H}$ — обратная масса атома)

Рис. 2. То же, для молекулы HCN (блок A)

Это замечание справедливо и в том случае, когда рассматривается ряд Тейлора от нескольких параметров $\zeta_1, \zeta_2, \ldots, \zeta_n$ или какой-нибудь их функции $\varphi(\zeta_1, \zeta_2, \ldots, \zeta_n)$. Отметим, что ни рассмотрение вместо $\ln \beta$ самого β -фактора, ни введение других функций $f(\beta)$ не устраняют отмеченной расходимости, так как она носит принципиальный характер и связана с многозначностью функции $\lambda = \lambda(\zeta)$.

В частности, принципиально невозможно построение универсального всегда сходящегося разложения вида (3). Из этого результата очевидно, что ряды Тейлора по молекулярным параметрам в общем случае непригодны для представления и анализа $\ln \beta$. Сказанное справедливо и в том случае, если из разложения или иного представления $\ln \beta$, не носящего характер степенного ряда, пытаются получить (в каком-либо приближении) алгебраическую формулу, включающую степени ζ^i .

В этом случае, чем больше членов по ζ^i мы будем брать, тем больше структура формулы будет приближаться к точному ряду Тейлора. Так как последний ряд расходящийся, то по мере увеличения точности (увеличения числа степенных членов) картина вкладов в $\ln \beta$ будет совершенно искажаться, а именно члены с высокими степенями будут вносить все большие вклады с разными знаками. Это обстоятельство ведет к перераспределению вкладов, вносимых в $\ln \beta$ различными молекулярными параметрами. Для случая разложения в ряды ортогональных полиномов это отмечено нами в работе [10].

Продемонстрируем это обстоятельство с помощью следующего вычислительного эксперимента. Построим аппроксимацию полиномами Чебышева T_n [15] функции $\ln \beta = f(\mu_{\rm H})$ для молекулы H₂O (замещение одного атома водорода) при изменении $\mu_{\rm H}$ от 0 до $0.6 \cdot 10^{24}$ г⁻¹, учитывая различное число членов i = 1, 2, ..., 10. Коэффициенты при полиномах Чебышева вычислялись численным интегрированием по формуле:

$$C_n = \frac{2}{\pi} \int_{-1}^{+1} \frac{\ln \beta(\mu_{\rm H}) T_n(t) dt}{\sqrt{1 - t^2}},\tag{8}$$

где $\mu_{\rm H} = 0.3 + 0.3t$, при n = 0 коэффициент перед интегралом заменяется на $\frac{1}{\pi}$.

Раскрывая выражения для полиномов Чебышева и приводя подобные члены, получаем соответствующие отрезки ряда по µ_H:

$$\ln \beta(\mu_{\rm H}) = S_0 + S_1 \mu_{\rm H} + S_2 \mu_{\rm H}^2 + \ldots + S_k \mu_{\rm H}^k + \ldots + S_i \mu_{\rm H}^i.$$
(9)

Коэффициенты S_k и средняя ошибка аппроксимации функции $\ln \beta(\mu_{\rm H})$ приведены в табл.1 для различных значений *i*. Как видно из таблицы, ошибка аппроксимации уменьшается с ростом числа учитываемых членов. Однако, коэффициенты S_k зависят от числа учитываемых членов и изменяют свое значение при каждом последующем *i*. Очевидно, что величины S_k никак не связаны с производными $\frac{\partial \ln \beta}{\partial \mu_{\rm H}}$, а их значение всецело определяется степенью аппроксимирующего полинома *i*. Поэтому величина вклада, вносимого членами с каждой конкретной степенью в $\ln \beta$, не может быть ассоциирована с физическим смыслом соответствующей производной. Этот вывод носит общий характер и применим не только к $\ln \beta$, но и к другим физическим зависимостям.

> Таблица 1. Зависимость коэффициентов полиномиальной аппроксимации функции $\ln \beta(\mu_{\rm H})$ от степени аппроксимирующего полинома

i	S_0	S_1	S_2	S_3	S_4	S_5	S_6	S_7	S_8	S_9	Ошибка
											%
1	2.8										19.0
2	6.0	-10.5									-8.0
3	6.3	-14.7	6.9								-1.3
4	6.4	-16.9	16.5	-10.6							0.3
5	6.4	-18.0	25.8	-35.4	25.7						0.19
6	6.5	-18.5	33.4	-70.7	87.9	-44.9					0.03
7	6.5	-18.8	38.8	-108.8	210.6	-226.5	100.9				0.02
8	6.5	-18.9	41.9	-140.9	363.1	-599.3	552.8	-215.2			-0.006
9	6.5	-19.0	43.2	-157.6	472.9	-989.8	1321.9	-1004.0	328.7		-0.002
10	6.5	-19.0	42.7	-148.2	392.3	-601.6	223.9	805.9	-1280.1	595.8	-0.01

Таким образом, проведенное исследование ясно показывает, что построить универсальное аналитическое разложение β -фактора и других подобных функций, в частности, нулевой колебательной энергии молекулы [6] принципиально невозможно ввиду многозначности функции λ (ζ_1, \ldots, ζ_n) корней векового уравнения (ζ_i — молекулярные параметры, например, силовые постоянные и массы атомов). Это обстоятельство ограничивает применимость известных подходов (метод ортогональных разложений Бигеляйзена-Ишиды и метод возмущений Вольфсберга) и приводит к их неоднозначности, что делает их непригодными для анализа β -факторов молекул, сильно различающихся по своему строению и силовому полю.

Поэтому нами был разработан [14] принципиально новый подход — численное представление колебательных составляющих термодинамических функций, их изотопных разностей и колебательной составляющей $\ln \beta$ в виде матриц вкладов структурных элементов молекулы (связей, валентных и двугранных углов).

Печатается в соответствии с решением Ученого Совета факультета агрохимии и почвоведения Московской с.-х. академии им. К.А.Тимирязева от 14 декабря 1987 года.

Список литературы

- [1] Bigeleisen J., Hom R.C., Ishida T. Isotope chemistry and molecular structure. Carbon and oxygen isotope chemistry // Journal of Chemical Physics. - 1976.
 - Vol. 64, no. 8. - Pp. 3303-3310.
- [2] Bigeleisen J., Ishida T. Application of Finite Orthogonal Polynomials to the Thermal Functions of Harmonic Oscillators. I. Reduced Partition Function of Harmonic Oscillators // Journal of Chemical Physics. - 1968. - Vol. 48, no. 3.
 - Pp. 1311-1330.
- Bigeleisen J., Ishida T., Lee M.W. Correlation of the isotope chemistry of hydrogen, carbon and oxygen with molecular forces by the WIMPER(2) method // Journal of Chemical Physics. - 1981. - Vol. 74, no. 3. - Pp. 1799-1816.
- [4] Ishida T., Bigeleisen J. Isotope chemistry and molecular structure. Deviations from the first rule of the mean // Journal of Chemical Physics. 1976. Vol. 64, no. 11. Pp. 4775-4789.
- [5] Nemeth G., Gellai B., Jancso G. Application of the minimax approximation to the reduced partition function of isotopic molecules // Journal of Chemical Physics. - 1971. - Vol. 54, no. 4. - Pp. 1701-1708.
- [6] Oi T., Ishida T. Correlation of zero-point energy with molecular structure and molecular forces. 1. Development of the approximation // The Journal of Physical Chemistry. - 1983. - Vol. 87, no. 6. - Pp. 1067-1073.
- [7] Redlich O. Eine allgemeine Beziehung zwischen den schwingungsfrequenzen isotoper Molekeln. (nebst Bemerkungen über die Berechnung harmonischer Kraftkonstanten) // Zeitschrift für Physikalische Chemie, Abt.B. – 1935. – Vol. 28, no. 5. – Pp. 371–382.
- [8] Singh G., Wolfsberg M. The calculation of isotopic partition function ratios by a perturbation theory technique // Journal of Chemical Physics. - 1975. -Vol. 62, no. 10. - Pp. 4165-4180.

- [9] Skaron S.A., Wolfsberg M. The Calculation of Isotopic Partition Functions Ratios by a Perturbation Theory Technique. 2.Dissection of the Isotope Effect // Journal of the American Chemical Society. - 1977. - Vol. 99, no. 16. - Pp. 5253-5261.
- [10] Гладун Л.В., Князев Д.А., Бочкарев А.В. Исследование свойств полиномиальной аппроксимации изотопных эффектов координационных соединений и оценка ее точности // Известия TCXA. — 1985. — № 1. — С. 179–183.
- [11] Князев Д.А., Бланк Т.Л., Ивлев А.А., Бланк А.Д. Новое приближенное выражение для отношения статистических сумм по состояниям изотопных форм // Доклады АН СССР. — 1977. — Т. 233, № 1. — С. 126–128.
- [12] Князев Д.А., Бланк Т.Л., Ивлев А.А., Бланк А.Д. Компактные выражения для интерпретации химических изотопных эффектов // Журнал физической химии. — 1979. — Т. 53, № 7. — С. 1682–1686.
- [13] Князев Д.А., Мясоедов Н.Ф., Бочкарев А.В. Исследование первых производных по обратной массе атомов от квадратов частот нормальных колебаний как метод переотнесения колебаний при изотопном замещении // Журнал прикладной спектроскопии. — 1985. — Т. 43, № 4. — С. 678–681.
- [14] Князев Д.А., Мясоедов Н.Ф., Бочкарев А.В., Жаворонков Н.М. Представление термодинамических функций изотопных форм в терминах молекулярного строения // Теоретические основы химической технологии. — 1987. — Т. 21, № 4. — С. 472–479.
- [15] *Корн Г., Корн Т.* Справочник по математике для научных работников и инженеров. М.: Наука, 1974. С. 832.
- [16] *Маркушевич А.И.* Теория аналитических функций. М.: Наука, 1967, 2 издание. Т. 1. С. 486.
- [17] *Чумаевский Н.А.* Метод формирования радикальных колебаний. М.: Наука, 1983. — С. 112.